Integrating touch to motion planning

Seunghun Koh (고승훈)

Course URL: http://jupiter.kaist.ac.kr/~sungeui/SGA/

Summary of last presentation

Application of using deep reinforcement learning in robots

- Target-driven Visual Navigation Indoor Scenes using Deep Reinforcement Learning
 - Learning based target image
 - Generalization to many environments
 - Transfer of knowledge from the simulation to the real world
- Applying Asynchronous Deep Classification Networks and Gaming Reinforcement Learning-Based Motion Planners to Mobile Robots
 - Use of Abstraction map and asynchronous design to deal with delays of deep classifier and lack of computational resource

Motivation

- Imagine grabbing a cup without sense of touch
- Sense of touch recognised to be important in subject-target interaction
 - Vision data only does not provide useful information for interaction between the object and robot

Previous works

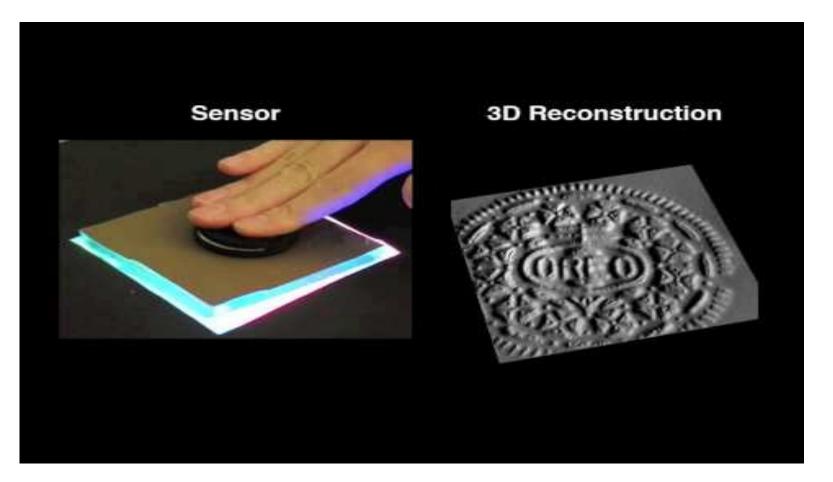
- Touch-based control
 - Estimating stability of current grasp [3]
 - Extracting tactile features to adaptively change the grasping force [4]

Challenges

- Limitations of hardware
- How to integrate tactile sensor to existing control scheme

- 1. More Than a Feeling: Learning to Grasp and Regrasp Using Vision and Touch
 - IEEE Robotics and Automation Letters, October 2018
- 2. Manipulation by Feel: Touch-Based Control with Deep Predictive Models
 - ICRA, 2019

GelSight sensor



GelSight sensor

- Optical tactile sensor with soft elastomer painted with a reflective membrane
 - Able to observe high-resolution deformation of the contact surface with a camera
 - Can be used to calculate the force applied and slip information
- Sensory data provided in regular 2D grid image format

Learning to Grasp (Paper 1)

• Task

- Learning to grasp an object with few regrasps as possible
- Robot with RGB camera and two Gelsight sensors, one for each finger.



Action-conditional model

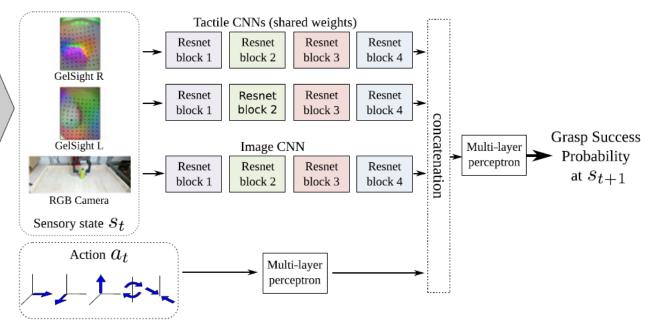
• Prediction problem:

- Variables:
 - Current state $s_t \in S$
 - •Time t
 - •Action $a \in A$

- Translation, rotation, applied force, position of robot

 Trying to predict the probability of the robot successfully grabbing the object at time t+1 after applying the action a to s_t

Overall model



How robot operates

- 1) Observe current status
- 2) Randomly sample possible actions
- 3) Choose the action with the highest probability of successful grab and execute it
- 4) If the probability exceeds 90%, grab the object

Data collection

Self-supervised automated data collection

1. Collect grasping trials

- Position of end-effector near to the object
- Random orientation and force
- Labelling of data done by deep neural network trained to detect contacts using the GelSight images (1 – successful, 0 – unsuccessful)
- 2. Use configurations, define actions as change in configuration

Result - Comparison

TABLE I

K-Fold (K = 3) Cross-Validation Accuracy of the Different Models Trained With 18,070 Data Points

Model	Accuracy			
WIOUCI	(mean \pm std. err.)			
Chance	$62.80\% \pm 0.85\%$			
Vision (+ action)	$73.03\% \pm 0.24\%$			
Tactile (+ action)	$79.34\% \pm 0.66\%$			
Tactile + Vision (+ action)	${f 80.28\%\pm 0.68\%}$			
Tactile + Vision (no action)	$76.43\% \pm 0.42\%$			

Result – Grasp evaluation

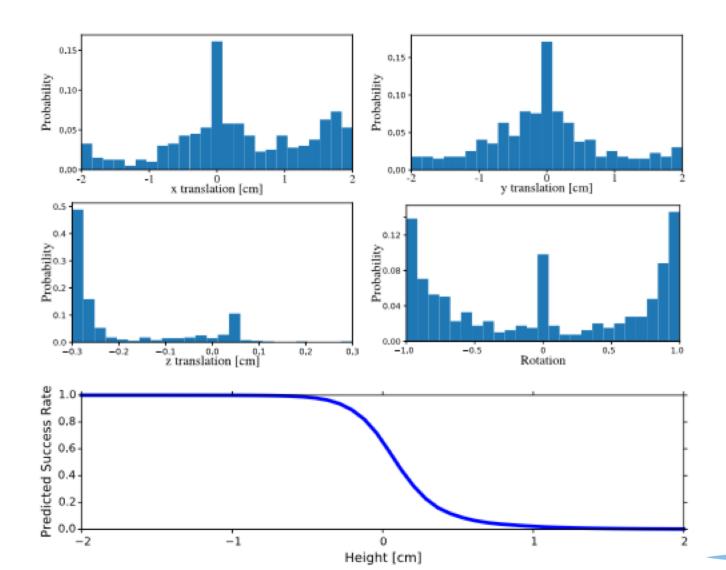
TABLE II DETAILED GRASPING RESULTS USING DIFFERENT POLICIES FOR THE "EASY" AND "HARD" TEST OBJECTS

"Easy" set	Objects	B		-	The second	J	8		-	Clerkelt			Average grasp success
n a	Methods	215g	160g	40g	125g	125g	65g	135g	30g	380g	140g	10g	
J,	% grasp success (# success / # trials)						62.201						
	Vision only Tactile + Vision	76% (38/50)	70% (7/10) 100% (10/10)	60% (6/10)	50% (5/10)	50% (5/10) 90% (9/10)	90% (9/10) 100% (10/10)	40% (4/10) 90% (9/10)	60% (6/10) 100% (10/10)	90% (9/10) 80% (8/10)	10% (1/10) 90% (9/10)	100% (10/10)	63.2% 94.0%
	Cylinder fitting	90% (18/20)	90% (18/20)	80% (16/20)	· · · · · · · · · · · · · · · · · · ·	(/	100% (10/10)	()	75% (15/20)	35% (7/20)	20% (4/20)	90% (9/10) 100% (20/20)	75.9%
	Cymruci nunig	90% (18/20)	90% (18/20)	80% (10/20)	55 % (11/20)	100 % (20/20)	100 / (20/20)	<i>Ju k</i> (10/20)	15 % (15/20)	55 % (H20)	20% (4/20)	100 /2 (20/20)	15.970
'Hard" set	Objects		Ð		8	3		ê	P		9		Average grasp success
Ia	Methods	230g	120g	195g	50g	70g	85g	38g	165g	65g	340g	110g	
Ļ						<u> </u>	ccess (# succes						
-	Vision only	60% (6/10)	80% (8/10)	30% (3/10)	30% (3/10)	80% (8/10)	40% (4/10)	60% (6/10)	50% (5/10)	50% (5/10)	50% (5/10)	20% (2/10)	50%
			4000 (4040)										
	Tactile + Vision Cylinder fitting	80 % (8/10) 95% (19/20)	100% (10/10) 100% (20/20)	50% (5/10) 35% (7/20)	80% (8/10) 100% (20/20)	90% (9/10) 90% (18/20)	70% (7/10) 15% (3/20)	100% (10/10) 90% (18/20)	40% (4/10) 85% (17/20)	60% (6/10) 15% (3/20)	80% (8/10) 15% (3/20)	60% (6/10) 95% (19/20)	7 3.6% 66.8%

Result – Force vs success rate



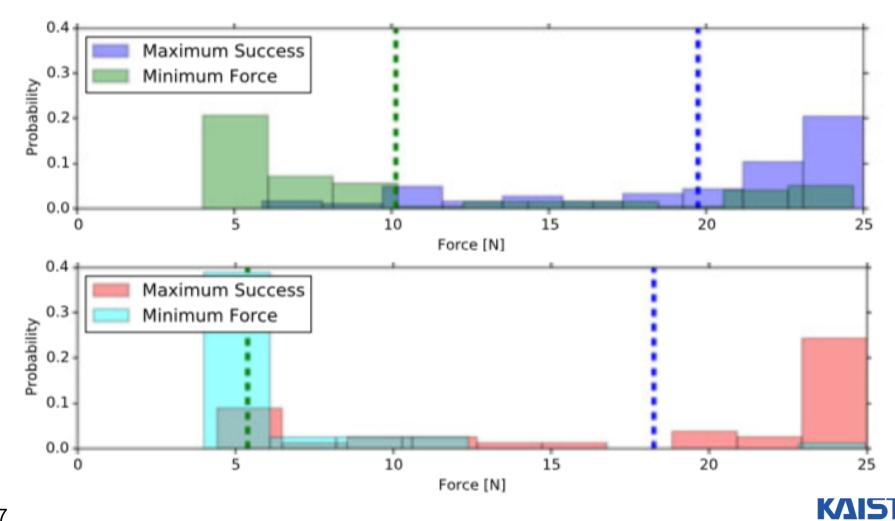
Result – Tendency to move down



KAIS1

16

Change in policy



Contribution

- New multi-modal action-conditional model for grasping using vision and touch data
- Effective in grasping novel objects
- Able to introduce additional constraints on contact forces

Limitation

- Only makes single-step predictions
- Does not perform information gathering actions
- Relatively coarse actions
- Application to real-world environment?

Manipulation by Feel (Paper 2)

Tasks

- 1. Ball repositioning
- 2. Analog stick deflection
- 3. Rolling a 20-sided dice
- Robot with one finger, attached with GelSight sensor

Model-Predictive Control

• Prediction problem:

- Variables:
 - •Goal image I_g
 - Current observation I_0
 - •Time t
- Try to predict best sequence of candidate actions a_{1:T} that after I_T, observation after executing those actions similar to I_g.

•T (horizon time): time when the sequence of action ends

Deep Recurrent Visual Dynamics Model

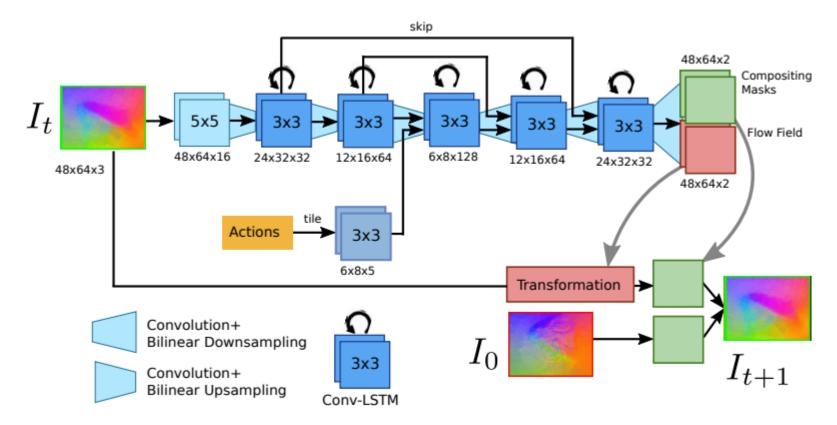
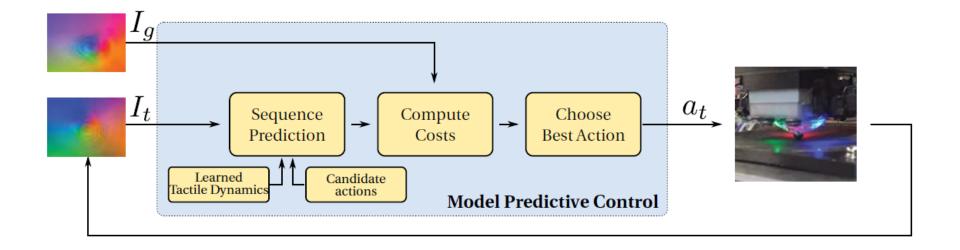


Fig. 11: Video Prediction Architecture.

Overall model



How robot operates

- 1) Observe current status
- 2) Sample sequences of possible actions
 *a*_{1:T}
- 3) Find the optimal action sequence
- 4) Execute only the first action of the sequence

Data Collection

- Autonomous data collection
 - Trajectories were collected for each of three tasks
 - Applying random movements to robot hand along each of the three axis

Evaluation

• Metric

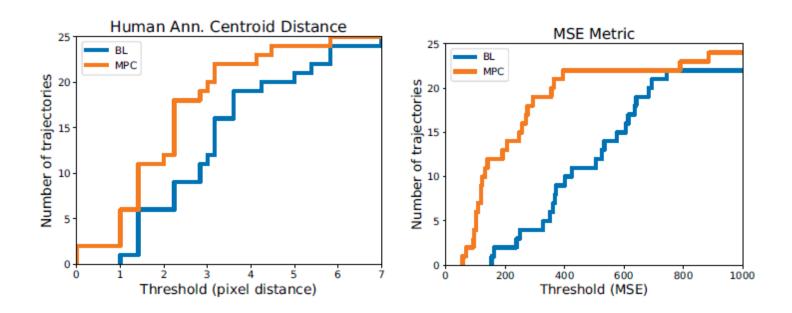
- 1) Mean squared error of the difference between the goal-image and observation when the movement is done
- 2) Manually annotated distance in pixel-space between the pressure centroid of the object at the end of the trajectory and the location of the pressure centroid in the goal image
- 3) (For dice-rolling) the fraction of trials in which the dice could be rolled so that it has the desired face on top

Evaluation

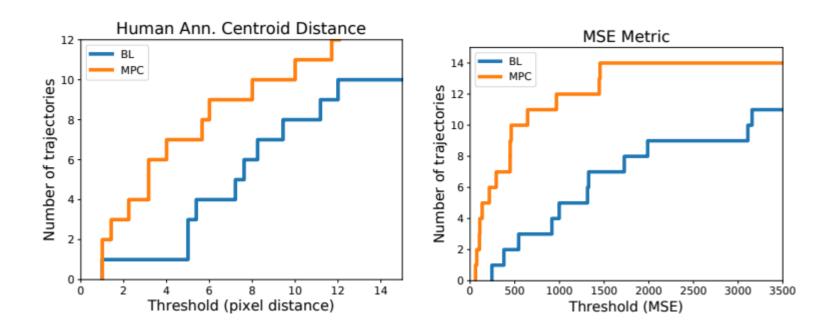
Baseline

- Calculates the pressure centre on the imprint of the object the robot is currently touching on
- Calculates the pressure centre on the goal image
- Moves the robot in a straight line from the current pressure centre to goal pressure centre

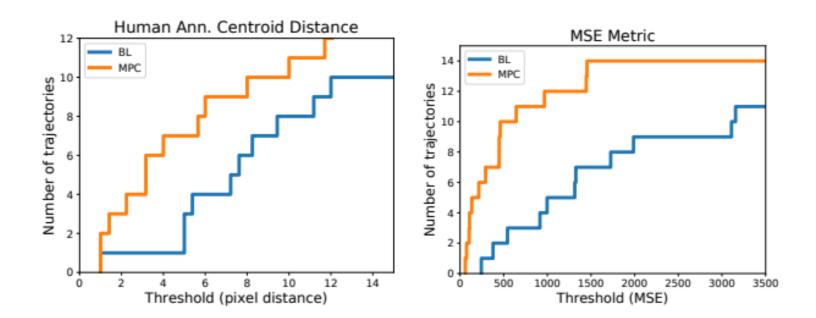
Result – Ball



Result - Dice



Result - Joystick



Result – Overall

	Median L2	Success Rate		
	Ball Rolling	Analog Stick	Die	
Tactile MPC	2.10	5.31	86.6% (26/30)	
Centroid Baseline	2.97	8.86	46.6% (14/30)	

Contribution

- Training deep model-based control polices directly on high-dimensional tactile sensor data
- Training such policy without any rewards
- Specifying the goals of policy as data directly from tactile observation space

Limitation

- Short horizon time
- Robot arm with single finger
 - Limited range of possible actions

Overview

	Paper 1	Paper 2
Tasks	Grasping the objects	 Rolling a ball Moving a joystick Rolling a 20-sided dice
Data type used	Vision + tactile	Tactile only
Model	Finding the best action that maximizes the grab probability iteratively	Finding the best sequence of actions that minimizes the difference between goal image and observation at the horizon time iteratively.
Input	Tactile sensor data, vision data from RGB camera	Tactile sensor data

Reference

- [1] Calandra, Roberto, et al. "More than a feeling: Learning to grasp and regrasp using vision and touch." *IEEE Robotics and Automation Letters* 3.4 (2018): 3300-3307.
- [2] Tian, Stephen, et al. "Manipulation by feel: Touch-Based Control with Deep Predictive Models." *2019 International Conference of Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 818-824.*
- [3] Y. Bekiroglu, J. Laaksonen, J. A. Jorgensen, V. Kyrki, and D. Kragic, "Assessing grasp stability based on learning and haptic data," *IEEE Trans. Robot.*, vol. 27, no. 3, pp. 616–629, Jun. 2011.
- [4] A. Bicchi, M. Bergamasco, P. Dario, and A. Fiorillo, "Integrated tactile sensing for gripper fingers," in *Proc. Int. Conf. Robot Vis. Sensory Control*, 1988, pp. 339–349.

